Diophantine Equation--3rd Powers

 

As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 9 positive cubes (), that every "sufficiently large" integer is a sum of no more than 7 positive cubes (; although it is not known if 7 can be reduced), and that every integer is a sum of at most 5 signed cubes ( ; although it is not known if 5 can be reduced to 4).

It is known that every n can be written is the form

(1)

An elliptic curve of the form for n an integer is known as a Mordell curve.

The 3.1.2 equation

(2)

is a case of Fermat's last theorem with n = 3. In fact, this particular case was known not to have any solutions long before the general validity of Fermat's last theorem was established. Thue showed that a Diophantine equation of the form

(3)

for A, B, and l integers, has only finite many solutions (Hardy 1999, pp. 78-79).

Miller and Woollett (1955) and Gardiner et al. (1964) investigated integer solutions of

(4)

i.e., numbers representable as the sum of three (positive or negative) cubic numbers.

The general rational solution to the 3.1.3 equation

(5)

was found by Euler and Vieta (Dickson 1966, pp. 550-554; Hardy 1999, pp. 20-21). Hardy and Wright (1979, pp. 199-201) give a solution which can be based on the identities

(6)
(7)

This is equivalent to the general 3.2.2 solution found by Ramanujan Eric Weisstein's World of Biography (Dickson 1966, pp. 500 and 554; Berndt 1994, pp. 54 and 107; Hardy 1999, p. 11, 68, and 237). The smallest integer solutions are

(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)

(Fredkin 1972; Madachy 1979, pp. 124 and 141; Dutch). Other general solutions have been found by Binet (1841) and Schwering (1902), although Ramanujan's Eric Weisstein's World of Biography formulation is the simplest. No general solution giving all positive integral solutions is known (Dickson 1966, pp. 550-561). Y. Kohmoto has found a 3.1.39 solution,
 
   
   
   
   
   
   
   
  (30)

3.1.4 equations include

(31)
(32)

3.1.5 equations include

(33)
(34)

and a 3.1.6 equation is given by
(35)

The 3.2.2 equation

(36)

has a known parametric solution (Dickson 1966, pp. 550-554; Guy 1994, p. 140), and 10 solutions with sum ,

(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)

(Sloane's A001235; Moreau 1898). The first number (Madachy 1979, pp. 124 and 141) in this sequence, the so-called Hardy-Ramanujan number, is associated with a story told about Ramanujan Eric Weisstein's World of Biography by G. H. Hardy, Eric Weisstein's World of Biography but was known as early as 1657 (Berndt and Bhargava 1993). The smallest number representable in n ways as a sum of cubes is called the nth taxicab number.

Ramanujan Eric Weisstein's World of Biography gave a general solution to the 3.2.2 equation as

(47)

where

(48)

(Berndt 1994, p. 107). Another form due to Ramanujan is

(49)

Hardy and Wright (1979, Theorem 412) prove that there are numbers that are expressible as the sum of two cubes in n ways for any n (Guy 1994, pp. 140-141). The proof is constructive, providing a method for computing such numbers: given rationals numbers r and s, compute

(50)
(51)
(52)
(53)

Then
(54)

The denominators can now be cleared to produce an integer solution. If is picked to be large enough, the v and w will be positive. If is still larger, the will be large enough for v and w to be used as the inputs to produce a third pair, etc. However, the resulting integers may be quite large, even for n = 2. E.g., starting with , the algorithm finds

(55)

giving

(56)
  (57)

The numbers representable in three ways as a sum of two cubes (a 3.23 equation) are

(58)
(59)
(60)
(61)
(62)

(Guy 1994, Sloane's A003825). Wilson (1997) found 32 numbers representable in four ways as the sum of two cubes (a 3.24 equation). The first is

(63)
The smallest known numbers so representable are 6963472309248, 12625136269928, 21131226514944, 26059452841000, ... (Sloane's A003826). Wilson also found six five-way sums,

(64)
(65)
(66)
(67)
(68)
(69)
and a single six-way sum

(70)

A solution to the 3.4.4 equation is

(71)

(Madachy 1979, pp. 118 and 133).

3.6.6 equations also exist:

(72)
(73)
(Madachy 1979, p. 142; Chen Shuwen).

In 1756-1757, Euler (1761, 1849, 1915) gave a parametric solution to

(74)

as

(75)
(76)
(77)

although relatively prime solutions require the use of fractional values of n (Dickson 1966, p. 578). To avoid this, Euler also gave the solutions
(78)
(79)
(80)

for , and

(81)
(82)
(83)

for (Dickson 1966, p. 579).

 

Cannonball Problem, Cubic Number, Hardy-Ramanujan Number, Multigrade Equation, Super-d Number, Taxicab Number, Trimorphic Number, Waring's Problem




References

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.

Berndt, B. C. and Bhargava, S. "Ramanujan--For Lowbrows." Amer. Math. Monthly 100, 645-656, 1993.

Binet, J. P. M. "Note sur une question relative à la théorie des nombres." C. R. Acad. Sci. (Paris) 12, 248-250, 1841.

Chen, S. "Equal Sums of Like Powers: On the Integer Solution of the Diophantine System." http://www.nease.net/~chin/eslp/.

Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, 1966.

Dutch, S. "Cubic Quartets with a, b, c < 1000." http://www.uwgb.edu/dutchs/RECMATH/Cubesums.htm.

Euler, L. Novi. Comm. Acad. Petrop. 6 (ad annos 1756-1757), p. 181, 1761.

Euler, L. Comm. Arith. Coll. 1, 207, 1849.

Euler, L. Leonhardi Euleri Opera Omnia, Ser. 1, Vol. 2. Leipzig, Germany: Teubner, p. 454, 1915.

Fredkin, E. Item 58 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 23, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/number.html#item58.

Gardiner, V. L.; Lazarus, R. B.; and Stein, P. R. "Solutions of the Diophantine Equation ." Math. Comput. 18, 408-413, 1964.

Guy, R. K. "Sums of Like Powers. Euler's Conjecture." §D1 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-144, 1994.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Koyama, K.; Tsuruoka, Y.; and Sekigawa, S. "On Searching for Solutions of the Diophantine Equation ." Math. Comput. 66, 841-851, 1997.

Kraus, A. "Sur l'équation ." Experim. Math. 7, 1-13, 1998.

Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, 1979.

Meyrignac, J.-C. "Computing Minimal Equal Sums Of Like Powers." http://euler.free.fr.

Miller, J. C. P. and Woollett, M. F. C. "Solutions of the Diophantine Equation ." J. London Math. Soc. 30, 101-110, 1955.

Moreau, C. "Plus petit nombre égal à la somme de deux cubes de deux façons." L'Intermediaire Math. 5, 66, 1898.

Nagell, T. "The Diophantine Equation and Analogous Equations" and "Diophantine Equations of the Third Degree with an Infinity of Solutions." §65 and 66 in Introduction to Number Theory. New York: Wiley, pp. 241-248, 1951.

Rivera, C. "Problems & Puzzles: Puzzle 048- , Prime." http://www.primepuzzles.net/puzzles/puzz_048.htm.

Schwering, K. "Vereinfachte Lösungen des Eulerschen Aufgabe: ." Arch. Math. Phys. 2, 280-284, 1902.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 157, 1993.

Sloane, N. J. A. Sequences A001235 and A003825 in "The On-Line Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/.

Wilson, D. Personal communication, Apr. 17, 1997.